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Global mean first-passage times of random walks on complex networks

V. Tej edor,"

2 0. Bemchou and R. Voituriez'

'Laboratoire de Physique Théorique de la Matiére Condensée (UMR 7600), Université Pierre et Marie Curie, 4 Place Jussieu, 75255
Paris Cedex, France
2Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching, Germany
(Received 2 September 2009; published 29 December 2009)

We present a general framework, applicable to a broad class of random walks on complex networks, which
provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged
over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply ex-
pressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with
the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple
condition that the random walk is transient at the target site and independently of the small-world, scale-free,
or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a
representative property of the network since the target averaged GMFPT satisfies much more restrictive

bounds.
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I. INTRODUCTION

Complex networks have appealed a lot of interest in the
past few years [1-3], mainly because of the broad range of
systems that they model, from biology to computer science
or sociology. Despite this variety and their intrinsic topologi-
cal complexity, many real networks have been shown to
share some common features, such as the small-world prop-
erty [2,4], the scale-free property [1,5], or even fractal scal-
ings [6]. A crucial issue, still debated, is to understand the
impact of the topological complexity of such systems on
transport properties. As a paradigm of dynamical processes,
random walks on complex networks have been intensely
studied [7-11] and in particular first-passage times have been
widely used as a quantitative indicator of transport efficiency
[12,13]. The mean first-passage time (MFPT) to a target
point was for instance calculated in the case of fractal net-
works [14,15].

Following the seminal work of Montroll [16], many pa-
pers have focused on the MFPT averaged over the starting
point of the walker [8,17-25], sometimes called the global
mean first-passage time (GMFPT). Recently, a sublinear de-
pendence on the size N of the network of the GMFPT to the
most connected node of network examples was shown
[18,24] and was interpreted as favorable for an efficient trap-
ping. This finding, in strong contrast with previously known
results in the case of regular [16] or fractal lattices
[8,19,21,22] lattices, has motivated an increasing number of
works [20,23,25,26] that have tried to find examples of net-
works with high trapping efficiency, namely, displaying
weaker and weaker dependence on N of the GMFPT. Rely-
ing on these specific examples, the heterogeneity, and more
precisely the scale-free property, was put forward as advan-
tageous [23,24], whereas the fractal property was suggested
to be unfavorable [25].

Here, we propose a general framework, applicable to a
broad class of networks, which deciphers the dependence of
the GMFPT on the network size N and provides a global
understanding of recent results obtained on specific examples
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[19,23-26]. We first show on the example of a new set of
networks that the GMFPT to the most connected node can
scale as NY with @ arbitrarily close to 0 despite the fractal
property of the network. We then present an analytical ap-
proach which yields (i) rigorous bounds on the N dependence
of the GMFPT and (ii) a simple criterion under which this
bound is reached, which in particular provides a condition
for a sublinear scaling with N, which is independent of the
scale-free, small-world, or fractal nature of the network.
Last, we show that a sublinear scaling is never representative
of the network in the sense that the GMFPT averaged over
the target site always scales faster than N.

II. DEFINITION OF THE PROBLEM AND NOTATIONS

We consider a set of graphs {Qg}gel\f where N, denotes the
number of sites of the graph G, at generation g, such that
N,— 0 when g—o. We cons1der a discrete time random
walker on Q We assume that the transition probabilities Wi
from site i to site j defining the walk are such that an equl—
librium distribution P, satisfying detailed balance exists. We
further assume that SUPyeg, Pey(X) —0 when g— . We de-
note by Fg_,;(T=n) the probablhty that the walker reaches
the target site T starting from site S for the first time after
T=n steps and write Tg_ ; for the MFPT from S to 7. Note

that this first average - is taken over the realizations of the
random walk. Taking the average of the MFPT over the start-
ing point, we define the GMFPT [denoted G(T)] by

s Poy(S)Ts 7

— 5+

G(T) =(Ts_p)sxr NG (1)
Note that this quantity depends on the target point 7. Here
the space average (-) is taken over the equilibrium distribu-
tion P, and slightly differs from the definition used in
[20,23-25,27] where the average is taken over the flat distri-
bution. It can be checked numerically on networks recently
studied in the literature that both definitions lead to the same
scaling with N,.
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FIG. 1. A fractal network leading to efficient trapping by the
hub T (on the most connected sites): case of k=3, u=2 at generation
g=3.

III. EFFICIENT TRAPPING ON A FRACTAL NETWORK

We first exhibit a set of fractal networks which extends
the so-called (u,u) flowers introduced in [28] and whose
GMFPT to the most connected node scales as N?, with 6
arbitrarily close to 0. Note that a similar scaling has been
reported in [18] for an example of nonfractal network. The
first generation of the graph consists in two nodes connected
by one link; then, at each iteration, every link is broken and
replaced by k paths of u=2 links (cf. Fig. 1). It is clear that
this network is fractal with a fractal dimension
d;=In(ku)/In(u) since the diameter of the network at genera-
tion g is L,~u® while the number of sites is N,~ (ku)*
(the usual (u,u) flowers in [28] correspond to the special
case k=2). Taking the target as one of the initial nodes, it is
easily seen that the determination of the GMFPT is
actually a one-dimensional (1D) problem since all the points
n(r) at the same distance r of the target are equivalent by
symmetry and thus lead all to the same T(r). Noting next
that for all rel[l,us—1], P (rn(r)=2P(T) and
Pe(u¥)n(u®)=Py(T), and using the classical 1D expression
T(r)=r(2u®-r) [29], we obtain the following exact expres-
sion: G(T)=2u®(2us+1)/6 o Nk Hence, for k large
enough, the trapping at the hub is arbitrarily efficient on this
network despite its fractal property.

IV. LOWER BOUND OF THE GMFPT

In order to gain understanding in the real parameters rel-
evant to the scaling of the GMFPT with the size N, we now
derive a general lower bound for the GMFPT. This deriva-
tion follows from the generalization of the Kac
formula [30,31] which we briefly recall here for the sake
of self-consistency. We start from the following backward
equation satisfied by Fg.,p for n=2 (see [29]):
Fs_g(n)=2;.7 wg;F;_y(n—1), which is completed by
Fg_(n=1)=wgy. Laplace transforming and averaging this
equation over S [with a weight P.,(S) as in Eq. (1)] yield the
generalized Kac formula,

Pey(T)

o)== D, @)

where F s_r(s)=2"_e™"Fg_(n). This very general equa-
tion, derived in a similar form in [31], relates the distribution
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of the first return time to a site 7 to the distribution of the
global first-passage time to 7. Expanding Eq. (2) to first or-
der in s yields the classical Kac formula Ty z=1/Py(T)
[30,31]. In turn, the second order in s gives

—
_ lPeg(T)T ror—1 . 3)

¢ 2 1= P(T)

Using next T?, = TzTﬂT and the classical Kac formula, the
above exact expression gives a lower bound for the GMFPT,

G(T) =

2P(T) “)
Note that this lower bound is in close analogy with the one
obtained in [32] in the context of continuous space.

We now discuss under which conditions this lower bound
is reached. Strictly speaking, this requires the very restrictive
condition that the variance of T;_ ; is zero. More generally
we can discuss under which conditions the right- and the
left-hand sides of Eq. (4) share the same scaling in the large
size limit. To do so, we consider a sequence of target sites
{Tg IS gg}geN, which can be, for instance, hubs of the net-
works at each generation as in [20,23,24]. Using Eq. (4) and
recalling that we have assumed Py (T,)—0 for g—c, we
define the minimal scaling of the GMFPT for g— o by

G(T,) = O[1/P(T))]. (5)

Equation (3) then shows that this minimal scaling is realized
as soon as the reduced variance of the first return time is
finite in the large size limit, namely, (T, ,~T% ,)/T% ,
=0(1).

We now show that this condition for a minimal scaling
with the network size N, is actually equivalent to the tran-
sience property of the random walk at the target site T, in the
large size limit. We first derive an alternative exact expres-
sion for the GMFPT. Let us introduce the pseudo-Green’s
functions [14,31] defined as

©

HS—»T= E [PSHT(n) - Peq(T)]’ (6)

n=1

where Pg_,7(n) is the propagator, namely, the probability that
the walker is at 7 at time n starting from S. It can be shown
(see [9,14,31]) that the MFPT is then given by the exact
expression Tg_7=[1/Pey(T)J(Hr_.7—Hg_7). Making use of
the relation Poy(S)Hs_.7=P.(T)Hr_s, which follows from
detailed balance (see also [9]), we obtain a second exact
expression for the GMFPT,

H
T—T ) (7)
Peq(T)[l - Peq(T)]

This equation provides an alternative condition under
which the minimal scaling is realized, given by
Hy;_,7=0(1) in the large g limit. From definition (6) of
Hr_ 7, this condition states that the random walk is transient
at site T, in the limit g — o, i.e., that in this limit, a random
walker returns on average only a finite number of times to T,
[33]. Conversely, Eq. (7) indicates that if the walk is recur-

G(T) =
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rent at T, for g— oo, that is if HT _r diverges for g— o,
then G(T) grows faster than 1/P, (Tf

The lower bound [Eq. (4)] and mlnrmal scaling [Eq. (5)]
for the GMFPT obtained above call for comments. (i) First,
our analysis puts forward a very general criterion to have a
minimal scaling of the GMFPT with the network size,
namely, the type (transient or recurrent) [33] of the random
walk at the target site. We stress that this criterion is inde-
pendent of the scale-free, small-world, or fractal properties
of the network. Note that for a generic set of graphs {G,}, .,
the type of the random walk for g— is a site dependent
property [8,28,33]. (ii) Second, the minimal scaling [Eq. (5)]
is fully determined by the equilibrium distribution at the tar-
get site, which is generally much easier to obtain than dy-
namical quantities and which crucially depends on the con-
nectivity of the target site. In particular for an isotropic
random walk, for which w;;=1/k; if i and j are neighbors and
else 0, where k; denotes the connectivity of site i, the mini-
mal scaling reads G(T,) ~ N k)/ky , where (k) is the con-
nectivity averaged over all sites. (iiiﬁ Note finally that in the
case of a recurrent random walk at the target the minimal
scaling is not realized but the scaling of the GMFPT can
however be sublinear if the growth of the connectivity at the
target is fast enough.

Our analysis provides a comprehensive view of recent
papers highlighting a sublinear dependence of the GMFPT to
a hub on different examples of networks. (i) In the case of
supercritical Erdos-Rényi and Molloy-Reed graphs studied
in [18], both leading to transient random walks, the minimal
scaling of Eq. (5) is indeed realized in agreement with our
approach. (ii) The same remark applies to the example of
deterministic scale-free graph proposed in [20], where the
transience of the random walk at the target site (as defined
above) is shown in the limit of large size since the probabil-
ity to come back at the hub in a finite time is null. (iii) Zhang
et al. [23,24] studied different examples of small-world
scale-free networks (Apollonian networks [23] and (u,v)
flowers [24]) where the GMFPT to the main hub displays a
sublinear scaling. In these examples the scaling of G(T,) is
strictly faster than our predicted minimal scaling 1/P.q(T,).
Our criterion therefore implies that random walks on such
structures are recurrent at the target site in the large size
limit.

V. BOUNDS ON THE AVERAGE GMFPT

As demonstrated previously, the GMFPT highly depends
on the target site, especially in the case of scale-free network
where the connectivity can be very heterogeneous. Therefore
the GMFPT to a specific target site cannot be taken as a
general characteristic of the network. Actually, as we proceed
to show the GMFPT averaged over the target site, defined by
(G)=Z7 Pey(T)G(T), has scaling properties with N, which
can widely differ from the case of a fixed target site studied
above. The inequality [Eq. (4)] gives straightforwardly the
following lower bound for (G) (see also [30]): (G)=N,/2.
Hence, the averaged GMFPT always scales faster than N,
and sublinear scalings discussed above are pointwise proper-
ties which are never representative of the network. Interest-
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ingly, we can also propose an upper bound for (G) following
[30]. First we define (see also [7,8]) the mean commute time

as 7; =T, . J+TJH, The quantity 7;; can actually be bounded
usrng a very useful electrical analogy. Let us assign a unitary
resistance to each link of the graph. Then it can be shown
(see [34]) that the following general relation holds

=N (k)r, ;» Where r;; is the effective electrical resistance of
the network between sites i and j. It is then straightforward
to obtain that r;; <dl i where d is the distance between i and
J- Indeed, d;; is the resistance of a path of length d;; between
i and j and any parallel paths can only lower the resistance.

We therefore finally obtain

s (g = WD ®)

where (d) is the weighted average over pairs of the point to
point distance d;;.

Importantly, this shows that the scaling of (G) is much
more constrained than the scaling of the GMFPT for a fixed
target. This is particularly striking in the case of small-world
networks for which {(d) ~In N,: hence in case of small-world
networks with finite (k), widespread in nature [2], this shows
that (G) always scales linearly with N, (up to logarithmic
corrections). Note also that these bounds [Eq. (8)] are com-
patible with the linear scaling of (G) with N, reported in the
case of Apollonian networks [13] and (1,2) flowers [8]. The
conditions for which the scaling of each of the bounds in Eq.
(8) is realized can also be discussed. As for the scaling of the
lower bound, a sufficient condition for its realization is that
for any sequence of targets {T, € G}, . the random walk is
transient at 7, in the limit g—o. Note however that this
condition is not necessary, and the bound can be reached for
networks having mixed type properties, as in the case of
(1,2) flowers already mentioned [8]. As for the scaling of the
upper bound, first notice that for any tree graph, r;; is exactly
the distance d;; as discussed above using the electrlcal anal-
ogy. We conclude that for any tree the scaling of the upper
bound is realized. In particular we find that (G)~N, In N,
for any small-world tree.

Additional comments are in order. (i) First, Eq. (8) pro-
vides as a by-product an upper bound for the GMFPT itself,
leading finally to 1/[2Py(T)]=G(T) =N (k)d)/[2P.(T)].
(ii) Second, this upper bound for GMFPT inductively gives
an upper bound of the trapping time in the case of a moving
target using the Pascal principle [35]. (iii) Last, we underline
that in the case of fractal networks, characterized by a fractal
dimension dyand a walk dimension d,, [6] an explicit scaling
of (G) can be obtained (see [8,19]). Indeed, using for in-
stance the asymptotics of the MFPT between points sepa-
rated by a distance r [14] and averaging over r, one gets the
following scaling:

N, if d,, <d;
<G> ~ Ng ln(Ng) if dw = df (9)
N d, > dy,

which depends on the type of the random walk (transient if
d;>d,).
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VI. CONCLUSION

We have presented a general framework, applicable to a
broad class of networks, which provides rigorous bounds on
the size dependence of the GMFPT to a target site. We have
shown that the GMFPT has the same scaling in the large size
limit as this lower bound under the condition that the random
walk is transient at the target site. This shows that the type of
the random walk (transient or recurrent) is a crucial criterion
to determine the scaling of the GMFPT, widely independent
of its scale-free, small-world, or fractal properties. This study
reconciles recent works on GMFPT for random walks on
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various network examples. Additionally, we have demon-
strated that the scaling of the GMFPT to a specific target is
not a representative property of the network since the target
averaged GMFPT satisfies much more restrictive bounds,
which in particular forbid any sublinear scaling with the net-
work size.
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